17,368 research outputs found

    Secrecy Wireless Information and Power Transfer in Fading Wiretap Channel

    Full text link
    Simultaneous wireless information and power transfer (SWIPT) has recently drawn significant interests for its dual use of radio signals to provide wireless data and energy access at the same time. However, a challenging secrecy communication issue arises as the messages sent to the information receivers (IRs) may be eavesdropped by the energy receivers (ERs), which are presumed to harvest energy only from the received signals. To tackle this problem, we propose in this paper an artificial noise (AN) aided transmission scheme to facilitate the secrecy information transmission to IRs and yet meet the energy harvesting requirement for ERs, under the assumption that the AN can be cancelled at IRs but not at ERs. Specifically, the proposed scheme splits the transmit power into two parts, to send the confidential message to the IR and an AN to interfere with the ER, respectively. Under a simplified three-node wiretap channel setup, the transmit power allocations and power splitting ratios over fading channels are jointly optimized to minimize the outage probability for delay-limited secrecy information transmission, or to maximize the average rate for no-delay-limited secrecy information transmission, subject to a combination of average and peak power constraints at the transmitter as well as an average energy harvesting constraint at the ER. Both the secrecy outage probability minimization and average rate maximization problems are shown to be non-convex, for each of which we propose the optimal solution based on the dual decomposition as well as suboptimal solution based on the alternating optimization. Furthermore, two benchmark schemes are introduced for comparison. Finally, the performances of proposed schemes are evaluated by simulations in terms of various trade-offs for wireless (secrecy) information versus energy transmissions.Comment: to appear in IEEE Transactions on Vehicular Technolog

    Momentum polarization: an entanglement measure of topological spin and chiral central charge

    Full text link
    Topologically ordered states are quantum states of matter with topological ground state degeneracy and quasi-particles carrying fractional quantum numbers and fractional statistics. The topological spin θa=2πha\theta_a=2\pi h_a is an important property of a topological quasi-particle, which is the Berry phase obtained in the adiabatic self-rotation of the quasi-particle by 2π2\pi. For chiral topological states with robust chiral edge states, another fundamental topological property is the edge state chiral central charge cc. In this paper we propose a new approach to compute the topological spin and chiral central charge in lattice models by defining a new quantity named as the momentum polarization. Momentum polarization is defined on the cylinder geometry as a universal subleading term in the average value of a "partial translation operator". We show that the momentum polarization is a quantum entanglement property which can be computed from the reduced density matrix, and our analytic derivation based on edge conformal field theory shows that the momentum polarization measures the combination ha−c24h_a-\frac{c}{24} of topological spin and central charge. Numerical results are obtained for two example systems, the non-Abelian phase of the honeycomb lattice Kitaev model, and the ν=1/2\nu=1/2 Laughlin state of a fractional Chern insulator described by a variational Monte Carlo wavefunction. The numerical results verifies the analytic formula with high accuracy, and further suggests that this result remains robust even when the edge states cannot be described by a conformal field theory. Our result provides a new efficient approach to characterize and identify topological states of matter from finite size numerics.Comment: 13 pages, 8 figure

    3,3′-(2,2′-Bi-1H-imidazole-1,1′-diyl)dipropanol

    Get PDF
    In the title compound, C12H18N4O2, unlike other unconjugated disubstituted biimidazole derivatives reported so far, the two imidazole rings in a trans conformation exhibit a large planar rotation angle of 51.27 (4)°, and consist of half-mol­ecule asymmetric units related by a twofold rotation. The mol­ecules are linked into a three-dimensional framework with a parallel laminated construction via O—H⋯N and C—H⋯O inter­actions
    • …
    corecore